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On Fisher’s Method of Combining p-Values

R. C. ErnsTON

Department of Biometry and Genetics,
Louisiana State University Medical Center

Summary

The problem of combining p-values from independent experiments is discussed. It is shown that
Fisher's solution to the problem can be derived from a “weight-free” method that has been sug-
gested for the purpose of ranking vector observations (Biometries 19: 8597, 1963). The method
implies that the value p=0.371s a critical one: p-values below 0.37 suggest that the null hypothe-
sis is more likely to be false, whereas p-values above 0.37 suggest that it is more likely to be
true.
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1. Introduction

The p-value, or observed significance level attained in a particular experiment
(sometimes also called the posterior significance level), can be defined in words
as follows: it is the probability, under the null hypothesis, of obtaining the ob-
served result or any more extreme result. By a “more extreme’ result we mean
any outcome that would alert the experimenter, even more than did the observed
result, to the possibility that the null hypothesis is false.

Now suppose two experiments are conducted independently to test the same
null hypothesis. Experiment 1 leads to results 1 with a corresponding p-value py,
and experiment 2 leads to results 2 with a corresponding p-value ps. Thus, using
the definition of the p-value and noting that the two experiments are independent,
we can write

(1) P (results 1 or any more extreme result)=p;
P (results 2 or any more extreme result)=ps

and P (results 1 or any more extreme result and
results 2 or any more extreme result)=p;psa.

Is pips therefore the p-value attained as a result of both experiments taken
together? It is easy to see that this cannot be so by considering what it would
imply if % independent experiments were carried out, and each resulted in a p-
value of, say, 0.9. The analogous combined p-value would then be (0.9)?, and we

22+
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would arrive at the absurd conclusion that any null hypothesis could be made as
gignificant as we please merely by testing it on the basis of a large enough num-
ber of experiments!

Alternatively, let us think of p as the probability of a Type I error. Then the
overall probability of a Type I error for both experiments is the probability of
such an error in either of the two experiments, and we are led to combining the
p-values of the two experiments by taking

(2) P (results 1 or any more extreme result or
results 2 or any more extreme results)

=P TPz— 1Pz

=1—(1—p1) (1—p2).
But this also implies an absurdity. Suppose we conduct 7 experiments and each
results in a p-value of, say 0.05. If we take the combined p-value to be 1—(1—
—0.05)”, it is obvious that with this definition we can now make the p-values as
close to 1 as we please, again merely by repeating the experiment enough times!

In this article I first introduce the method F1sHER (1956) proposed for comi-

bining p-values. I then examine what is wrong with the above two paradoxical
formulations and show that the problem of combining p-values can be considered
identical to the problem of ranking vectors whose elements are in the interval
[0, 1]. Finally, I recall a method of ranking vectors proposed over twenty-five
years ago (Ersrox, 1963) and note that it leads directly to Fisher’s method.

2. Fisher’s Method for Combining p-Values

Fisher argued as follows. If the null hypothesis is true, p can be considered as a
realization of a random variable P that is uniformly distributed on [0, 1], i.e.
whose density function is

fP(p)—h{l it 0=p=1

0 otherwise .
Let Y= —2In P, so that under the null hypothesis the density function of ¥
is given by
1 -
=—e °, 0=y=e,
5 L
which is the density function of a chi-square distribution with 2 d.f.
Now if we have two independent statistics, each distributed as chi-square with
2 d.f., we know that their sum is distributed as chi-square with 4 d.f. Fisher
therefore proposed comparing —21n p; — 21In ps to the chi square distribution with
4 d.f. Remembering that small values of p correspond to large values of y, the
combined p-value is thus

(3) P(Ys=—2Inp—21In p2),

fy(y)=Te(p)

dp
d
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where Y, denotes a chi-square random variable with 4 d.f., i.e.

1 v
fraly)=- ye ¥, O0=y=e.

Thus, letting p1pz=e¢, so that —2Inp; —2Inpe= —21Inc, the combined p-value is

(v
(4) rkad dy
—2lne
1 _Y _¥=
——[—de ? _4e 2] =—clne+ec.
4 —9lne

In general, if we have n independent experiments yielding the p-values pi, pe,
2

.., Pn. then we consider —21Ine¢= — 2 3 In p; as arealization of a chi-square random
i-1
variable with 2n d.f., so that the combined p-variable is

oo

¥
1 T2
[y e T

—2Ince
Before continuing, it is interesting to note a particular implication of this
general result. Let us ask: what value of p, if it were replicated a large number
of times, would lead to a combined p-value of 0.5 by this criterion? For large =,
the median of a chi-square random variable with 2% d.f. is approximately equal
to its mean, or 2n. We therefore answer the question by setting

—2nInp=2n

and solving for p. The result is p=e1=0.87. This suggests that p <0.37 repli-
cated many times will imply that the null hypothesis is false, whereas p=0.37
replicated many times will imply that it is not false. Should we therefore view
0.37 as some critical value, below which the null hypothesis is more likely and
above which the alternative hypothesis is more likely? The answer to this ques-
tion will be discussed in the conclusion.

3. Reformulation of the Problem

Consider again the case of two independent experiments. The resulting p; and p.
can be considered, under the null hypothesis, as a realization of the vector ran-
dom variable (P, Ps) that is uniformly distributed on the unit square, as illus-
trated in Figure 1. Probability (1) corresponds to the doubly hatched rectangle
in the lower left-band corner of this figure. while probability (2) corresponds to
the whole hatched part of the figure. We know that probability (1) is too small
and probability (2) is too large, so the combined probability we are seeking must
lie somewhere between these two extremes. It should correspond to the doubly
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hatched area together with some part of the singly hatched areas, as illustrated
in Figure 2. The question is: how do we define the curve in Figure 2 such that
the combined p-value is equal to the area beneath it?

Tfig. 1. The pair of p-values py, pa considered as a point
on the unit square. The area of the doubly hatched
rectangle is pips, the whole hatched area is p1+p2—
= P1p2.

Fig. 2. Hypothetical area that corresponds to the com-
bined p-value. The doubly hatched area is the same as
in Figure 1; the singly hatched areas are parts of those
in Figure 1. The curve defining the houndary of the
hatched areas is everywhere convex decreasing.

Recalling the definition of the p-value as given in the opening sentence of this
article, we see that the combined p-value is neither (1) nor (2) but rather

P (results 1 and results 2 or any more extreme result) .

Now if we measure “‘results 1" by the statistic p; and “results 2" by the statistic
pa, we see immediately that we are trying to find

P (obtaining p; and ps or any more extreme pair of p-values) .

In other words, we want all the points (P;, P2) that are more extreme than (p,
p2) to lie below the curve in Figure 2, and all those less extreme than (p1, p2) to
be above it. The area below the curve will then be the desired p-value. This leads
us to consider the problem of ranking points in the plane, or, more generally, of
ranking n-dimensional vectors.
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4. Ranking Vectors and Its Relation to Combining p-Values

A practical problem can be briefly described as follows (ELsron, 1963). A poultry
breeder wishes to select female breeding stock for broiler production. On each
member of the flock the following measures are available: z, the number of eggs
laid per year, and xz, the weight in pounds at ten weeks of age. The problem is to
rank all the birds “placing equal emphasis on each trait”, so that a predetermined
fraction can be selected to be the mothers of the next generation. Clearly it makes
no sense to rank the birds on the basis of 23 + 22, because on the scales of measure-
ments used this would give virtually no weight to @». If x; were w times as vari-
able as 2, one could consider ranking the birds on the basis of 2y + @sw, and then
this would define what was meant by “placing equal emphasis on each trait’.
Instead, we can develop a weight-free index based on the following considera-
tions.

If a bird lays no eggs at all, ie. 2 =0, we want to be certain of not selecting
it, however large s might be. Similarly there must be some lower bound, %, for
10-week weight; and if a particular bird has x, =%, we want to be certain of not
selecting it, however large a; might be. Conversely. if a bird has the largest values
possible for both a; and a2, we want to be sure to select it. We therefore want
an index function, /, of #; and 3 that satisfies the following three conditions:

(1)  must take on its smallest value at @ = 0, whatever the value of s

(i) 1 must take on its smallest value at a2 =k, whatever the value of ;;
(iii) / must take on its largest value when both @; and x; are largest.
In addition, if ¢is any given threshold value of 7 above which a bird will be se-
lected, we want the equation / =t to definea curve in the z;, 2z plane that is every-
where convex decreasing (analogous to the curve of Figure 2, in the Py, P plane).
This requirement, which intuitively seems reasonable, can be more rigorously
justified by reference to what economists call the law of substitution (SAMUEL-
SON, 1955).

The simplest mathematical function that satisfies the above conditions is

I =z (x2 — k). More generally. if we have n traits x1, xs, ..., x,. the analogous index
T

is I =[] (z¢— ki), where £; is the lower bound of ;. This index is weight-free in the
=1

sense that, provided the traits are each measured on a seale on which the smallest

possible value is 0, the ranking of the individuals is invariant under magnifi-

cation of any of the scales used. To see this, let #;=2;—&; and suppose we give

i n
weight w; to the i-th trait. The weighted index is then I=]] wr;=| [] -wi] X

n i=1 i=1
b4 [ﬂ :r'i] , and it is clear that the first of these two factors is the same for all in-
i=1

dividuals; it will therefore have no effect on how two individuals with different z’s
are ranked relative to each other. Let us now use this index to rank the points
(P1, P2) in Figure 2. The lower bounds of both P; and P are 0, and so the index
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in this case is I =(P1—%1) (Pa— fcgj =P P5. The curved line in Figure 2 is thus
the locus of points given by P1Ps=py1ps=c, and the area below the line is

P (PiPe=c)= f f 1dP1d Py .
PLPZS_;-G
Reference to Figure 3 shows that this integral can besplitinto parts and written

as
1 ¢/P;

QC—C-E—f—ff 1dP]_d.Pg
¢ [+
1
2 "+f . dP
=at—¢e* —_—— 4
(4 Pz 9
¢

=2—c?+ [eln Py—cPy]l=c—clnc,

15
Fig. 3. The area on the unit square that lies beneath
B the curve PyP;=pipz can be split into parts: the
< square ¢2, the two rectangles ¢ (1 —¢), and the rest.
oc i) P, 1

which is the same as (4).
The relation between combining p-values and ranking vectors is seen imme-
diately when we note that the weight-free index can be equivalently expressed

on a log scale, ie.In [= Z In z;, which in this case is Z In P;.

Thus o1 o
P(PiPs=c)=P (In Py+In P;=In ¢)
=P (—2In P;—2In P;= —2In¢),

which is the same probability as (3). In general, we have combined
p=P (obtaining p1, pa, ..., py Or any more extreme
set of n p-values)
=P (PP ... P,=c), wherethe P;are independently uniformly dis-
tributed on [0, 17,
n
=P (~—2 > lnPi-;-—:‘:!lnc) .

i=1
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n
where —2 3 In P; is distributed as y2 with 2» d.f. We thus see that Fisher’s
i-1

method for combining p-values corresponds to this method of ranking vectors.

5. Conclusion

It has been shown that Fisher’s method of combining p-values corresponds to a
weight-free method of ranking vectors of p-values, i.e., vectors whose elements
lie in the unit interval. In particular, the method of ranking has the property
that all vectors in which one or more p-values equal zero would be ranked (equal-
ly) lowest, and the veetor in which all p-values equal unity would be ranked
highest. Although there are many other ways in which vectors of p-values could
reazonably be ranked, and these would lead to different combined p-values, the
particular method discussed here both has intuitive appeal and leads to a mathe-
matically tractable result. If one accepts the rationale underlying this weight-
free method of ranking, then the value p=0.37 is a critical one: p-values below
0.37 suggest that the null hypothesis is more likely to be false, whereas p-values
above 0.37 suggest that it is more likely to be true. This result is even more in-
triguing when we note that, in terms of Bahadur relative efficiency, Fisher’s
method has been shown to be asymptotically optimal among essentially all
methods of combining independent tests (LirTELL and Forks, 1973).
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